Abstract

Causal set theory is an approach to quantum gravity in which spacetime is fundamentally discrete at the Planck scale and takes the form of an irregular Lorentzian lattice, or “causal set,” from which continuum spacetime emerges in a large-scale (low-energy) approximation. In this work, we present new developments in the framework of interacting quantum field theory on causal sets. We derive a diagrammatic expansion for in-in correlators in local scalar field theories with finite polynomial interactions. We outline how these same correlators can be computed using the double-path integral, which acts as a generating functional for the in-in correlators. We modify the in-in generating functional to obtain a generating functional for in-out correlators. We define a notion of scattering amplitudes on causal sets with noninteracting past and future regions and verify that they are given by S-matrix elements (matrix elements of the time-evolution operator). We describe how these formal developments can be implemented to compute early Universe observables under the assumption that spacetime is fundamentally discrete. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.