Abstract

In the present study, inhomogeneous plane harmonic waves propagation in dissipative partially saturated soils are investigated. The analytical model for the dissipative partially saturated soils is solved in terms of Christoffel equations. These Christoffel equations yields the existence of four wave (three longitudinal and one shear) modes in partially saturated soils. Christoffel equations are further solved to determine the complex velocities and polarizations of four wave modes. Inhomogeneous propagation is considered through a particular specification of complex slowness vector. A finite non-dimensional inhomogeneity parameter is considered to represent the inhomogeneous nature of these four waves. Impact of tortuosity parameter on the movement of pore fluids is considered. Hence, the considered model is capable of describing the wave behavior at high as well as mid and low frequencies. Numerical example is considered to study the effects of inhomogeneity parameter, saturation of water, porosity, permeability, viscosity of fluid phase and wave frequency on the velocity and attenuation of four waves. It is observed that all the waves are dispersive in nature (i.e., frequency dependent).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.