Abstract
After injury to the CNS, the accumulation of extracellular glutamate induces neuronal excitotoxicity, leading to secondary tissue damage. Astrocytes can reduce excess extracellular glutamate primarily through the astrocytic glutamate transporter-1 and the Na(+)-dependent glutamate/aspartate transporter (GLAST). In this study, we used an in vitro model of cadmium-induced cellular stress and found that glutamate uptake activity of astrocytes was suppressed because of cadmium-induced inhibition of GLAST expression. The blockage of cadmium-triggered Ca(2+) influx by Ca(2+) chelators elevated GLAST transcription and glutamate uptake activity in astrocytes, suggesting that the suppression of GLAST expression in cadmium-treated astrocytes was Ca(2+)-dependent. This was supported by the findings showing the reduction of GLAST mRNA in astrocytes after treatment with Ca(2+)-ionophore A23187. Cadmium reduced human GLAST promoter activity; however, it increased the binding of Ca(2+)-sensitive activator protein-1 (AP-1) and cAMP response element binding protein (CREB) to their specific elements derived from the human GLAST promoter. These results demonstrate that AP-1 and CREB may be coupled with Ca(2+)-dependent pathway triggered by cadmium to mediate the inhibition of GLAST transcription. Our results suggest that Ca(2+) influx into astrocytes after CNS injury could cause the down-regulation of GLAST expression, thus reducing the astrocytic glutamate uptake function, which in turn may exacerbate secondary damage after CNS injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.