Abstract

Endocytosis of the synaptic vesicle is a complicated process, in which many proteins and lipids participate. Phosphatidylinositol 4,5-bisphosphate (PIP(2) ) plays important roles in the process, and the dynamic regulation of this lipid is one of the key events. Synaptojanin is a PIP(2) phosphatase, and dephosphorylation of PIP(2) of the clathrin coated-vesicle results in the uncoating of the vesicle. NAP-22 is one of the major proteins of the neuronal detergent-resistant membrane microdomain and localizes in both the presynaptic plasma membrane and the synaptic vesicle. To elucidate the role of NAP-22 in synaptic function, a screening of the NAP-22 binding proteins through pull-down assay was performed. In addition to CapZ protein, synaptojanin-1 was detected by LC-MS/MS, and Western blotting using antisynaptojanin-1 confirmed this result. The interaction seems to be important in the course of synaptic vesicle endocytosis, because NAP-22 inhibited the phosphatase activity of synaptojanin in a dose-dependent manner. The inhibitory region for 5-phosphatase and the binding region for PIP(2) overlapped in the amino acid sequence of NAP-22, so elucidation of the regulatory mechanism of the PIP(2) binding ability of NAP-22 could be important in understanding the membrane dynamics at the presynaptic region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.