Abstract

The transient receptor potential vanilloid 1 (TRPV1) channel is a non-selective cation channel that is mainly found in nociceptive neurons of the peripheral nervous system; however, these channels have also been located within the CNS, including the entorhinal cortex. Whole-cell patch-clamp recordings of principal entorhinal cortex (EC) layers II/III neurons revealed that evoked inhibitory postsynaptic currents were depressed by application of the TRPV1 agonist capsaicin (CAP), accompanied by a change in the pair-pulse ratio (PPR). In addition, recordings of miniature inhibitory postsynaptic currents (mIPSCs) revealed that inter-event intervals but not amplitude were decreased in wild-type (WT) after application of CAP. This suggests that TRPV1 channels are functional in the entorhinal cortex and are located on inhibitory neurons with their axonal arborization within layers II/III. In order to study TRPV1 channels and their involvement in long-term potentiation (LTP) induction in a more intact circuit, extracellular field potential recordings were performed in EC layers II/III. It was found that activated TRPV1 channels preclude induction of long-term potentiation. In sharp contrast, clear LTP was observed when antagonizing TRPV1 channels or recording from TRPV1 knock-out mice. Thus, these results suggests that signaling through activating inhibitory presynaptic TRPV1 channels represents a novel mechanism by which a shift in feed-forward inhibition of layers II/III cortical principal neurons prompt changes in synaptic strength and thereby contribute to a change of information storage within the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.