Abstract
The effect of changes in pH on the gating properties of the cloned human intermediate-conductance, Ca2+-activated K+ channel (hIK) was studied using the patch-clamp technique. Multi-channel inside-out recordings of patches from HEK-293 cells stably expressing hIK channels revealed that the channel activity is modulated by changes in intracellular pH (pHi). Changes in extracellular pH (pHo) in the range from pH 6.0 to 8.2 did not affect the hIK whole-cell current. Intracellular acidification gradually decreased the activity of the hIK channel, approaching zero activity at pHi 6.0. Decreasing pHi altered neither the conductance nor the inward rectification of hIK channels. The proton-induced inhibition of the multi-channel hIK patch current could not be counteracted by increasing the cytosolic Ca2+ concentration to 30 microM. The molecular sensory mechanism underlying the proton-induced modulation of hIK gating is at present unknown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.