Abstract

Inhibition of the corrosion of zinc in various concentrations (0.01 to 0.05 M) of H 2SO 4 was studied using weight loss and hydrogen evolution methods of monitoring corrosion. The results revealed that various concentrations of azithromycin (0.0001 to 0.0005 M) inhibited the corrosion of zinc in H 2SO 4 at different temperatures (303 to 333 K). The concentration of H 2SO 4 did not exert significant impact on the inhibition efficiency of azithromycin, but inhibition efficiencies were found to decrease with increase in the concentration of the inhibitor. Values of inhibition efficiency obtained from the weight loss measurements correlated strongly with those obtained from the hydrogen evolution measurements. The activation energies for the corrosion of zinc inhibited by azithromycin were higher than the values obtained for the blank. Thermodynamic data revealed that the adsorption of azithromycin on the surface of zinc was endothermic (values of enthalpies of adsorption were positive), spontaneous (values of free energies of adsorption were negative) and was consistent with the adsorption model of Langmuir.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.