Abstract

Previously, we found that mevalonate-derived products together with an oxysterol regulated reductase synthesis at a posttranscriptional level. To determine which products were responsible for this regulation, either the squalene synthase inhibitor zaragozic acid A or the squalene cyclase inhibitor 4,4,10-β-trimethyl-trans-decal-3β-ol (TMD) was added to lovastatin-treated Syrian hamster cells in conjunction with mevalonate. Mevalonate alone decreased reductase synthesis 50% compared with lovastatin-treated cells. In contrast, when both zaragozic acid A and mevalonate were added to lovastatin-treated cells, there was no change in reductase synthesis. With either treatment, reductase mRNA levels did not change compared with lovastatin-treated cells. When both 25-hydroxycholesterol and mevalonate were added to lovastatin-treated cells, reductase synthesis and mRNA levels were decreased 95 and 50%, respectively. The 10-fold difference between changes in reductase synthesis and mRNA levels under these conditions reflects a specific effect of mevalonate-derived isoprenoids on reductase synthesis at the translational level. In contrast, coincubation of cells with mevalonate plus 25-hydroxycholesterol in the presence of zaragozic acid decreased reductase synthesis and mRNA levels 60 and 50%, respectively, compared with lovastatin-treated cells. Moreover, degradation of reductase was increased approximately 7-fold in cells treated with mevalonate alone but only 3-fold in cells treated with mevalonate and zaragozic acid A. These results indicate that isoprenoid products between mevalonate and squalene affect reductase at a posttranslational level by increasing degradation but do not regulate reductase synthesis at a posttranscriptional level. In contrast, when both TMD and mevalonate were added to lovastatin-treated cells, reductase synthesis was decreased approximately 50% with no corresponding decrease in reductase mRNA levels, similar to mevalonate only. Reductase degradation was increased approximately 7-fold under these conditions. Cellular incubation in TMD, mevalonate, and 25-hydroxycholesterol decreased reductase synthesis and mRNA levels 95 and 50%, respectively. From these results we concluded that mevalonate-derived nonsterols synthesized between squalene and lanosterol decrease reductase synthesis at a translational level—either alone or in combination with 25-hydroxycholesterol—and also increase reductase degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.