Abstract

Lung cancer is one of the most common and lethal types of malignancy. To date, radiotherapy and chemotherapy have been used as the two major treatment methods. However, radioresistance of lung cancer remains a therapeutic hindrance. The aim of this study was to identify whether small ubiquitin-related modifier (SUMO)-specific protease 1 (SENP1) is a marker of radioresistance that may serve as a target for enhancing the efficacy of lung carcinoma radiotherapy. SENP1 was observed to be overexpressed in lung cancer tissues, and the modulation of SENP1 expression was demonstrated to significantly affect the proliferation of lung cancer cells. Moreover, silencing the expression of SENP1 using small interfering RNA (siRNA) significantly sensitized lung cancer cells to radiation. Mechanically, it was demonstrated that SENP1 depletion significantly enhanced ionizing radiation (IR)-induced cell cycle arrest, γ-H2AX expression and apoptosis. Thus, these data suggest that SENP1 may be a desirable drug target for lung carcinoma radiotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.