Abstract
Inhibition of calcineurin (CnA) activity by cyclosporine A (CsA) is the mainstay in immunosuppressive therapy. CsA inhibits the phosphatase activity of the cytosolic phosphatase CnA and, therefore, prevents the dephosphorylation and subsequently nuclear translocation of the transcription factor nuclear factor of activated T cells (NFAT). However, CsA has multiple other targets within the cell and is, therefore, not specific. We developed a new approach to inhibit CnA/NFAT signaling. This synthetic peptide prevented CnA nuclear translocation in vitro. The purpose of this study was to demonstrate that this novel approach could potentially inhibit T-cell function in vitro and in vivo. T-cell activation (Jurkat T cells, naïve rat T cells, and peripheral human T cells) was assessed by protein synthesis, interleukin (IL)-2 promoter activity, and IL-2 levels after T-cell activation. Immunohistological stainings for CnA were performed to investigate nuclear localization of CnA. The immunosuppressive effects in vivo of the synthetic peptide were investigated in rats with heterotopic transplanted hearts. The nuclear localization signal peptide significantly decreased alloantigen-specific T-lymphocyte proliferation, IL-2 promoter activity, and IL-2 production (338% ± 27% vs. 149% ± 11%, n=8, P<0.05) in cultured T cells by inhibition of CnA nuclear translocation. The synthetic peptide also significantly decreased the number of graft infiltrating CD8 T lymphocytes. Moreover, treatment with the synthetic inhibitory inhibited acute graft rejection (5 ± 0.6 days vs. 12 ± 2 days, n=10, P<0.05). Inhibition of nuclear translocation of CnA is a novel approach to inhibit the activation of the CnA/NFAT signaling cascade. Further studies have to demonstrate the long-term use of this principle in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.