Abstract

The purpose of this investigation was to examine the role of nitric oxide (NO) in the dynamic baroreflex regulation of cardiac sympathetic nerve activity. In anesthetized rabbits, we imposed random pressure perturbations on the isolated carotid sinuses before and after the intravenous administration of NG-monomethyl-L-arginine. We characterized the dynamic properties relating carotid sinus pressure input to sympathetic nerve activity by means of a transfer function analysis. NG-monomethyl-L-arginine decreased the corner frequency of the transfer function (0.100 +/- 0.054 vs. 0.074 +/- 0.035 Hz; P < 0.05), whereas other parameters such as the steady-state gain and transmission lag time remained unchanged. Although cursory examination of these findings would suggest a possible contribution of NO in the dynamic baroreflex regulation of sympathetic nerve activity, quantitative assessment of the transfer function reveals only a minimal effect on the baroreflex regulation of arterial pressure, particularly under closed-loop conditions. We conclude that NO noticeably affects the dynamic baroreflex regulation of sympathetic nerve activity. However, it may not significantly affect arterial pressure regulation through central modulation of the carotid sinus baroreflex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.