Abstract

ObjectiveSystemic levels of up-regulated IL-1β and IL-1 receptors promote the pathogenesis of inflammation-associated diabetes. IL-1 receptor antagonist (IL-Ra) has shown slightly elevated beta cell function in patients with type 2 diabetes without significant improvement of hyperglycaemia. We investigated whether miR-153, an IL-1β responsive miRNA, could mimic IL-1β effects and whether its interruption would improve blood glucose control then offer an assistant curative approach to inflammation-associated diabetes. Materials/methodsAntago-miR-153 and Ago-miR-153 were injected into the abdominal aorta of leptin receptor-mutant db/db mice and C57BL/6 J mice, respectively. Blood glucose levels, glucose tolerance tests, insulin tolerance tests and insulin levels were regularly checked. Proteomic profiling combined with unbiased bioinformatics analysis, as well as experimental techniques, were utilized to identify target genes of miR-153. Anti-miR-153 and plasmid-based recovery assays were also performed using primary mouse islets and beta cell lines. ResultsThe miR-153 expression level was increased in IL-1β–treated beta cells and primary islets from the diabetic rodents. Pancreas overexpression of miR-153 caused glucose intolerance in C57BL/6 J mice but no alterations in body weight or insulin sensitivity. The inhibition of miR-153 temporarily reduced hyperglycaemia of db/db mice due to enhanced insulin secretion. Antago-miR-153 treatment ameliorated glucose intolerance in db/db mice during our observation period but did not improve insulin sensitivity. Mechanistically, miR-153 targeted three members of SNAREs to disturb insulin granule docking, thereby decreasing basal insulin secretion. Overexpression of anti-miR-153 or SNARE rescued the IL-1β–induced basal insulin secretion defect. Furthermore, miR-153 targeted beta cell–specific transcriptional factors and survival molecules to inhibit insulin biosynthesis and cell viability. ConclusionsThe IL-1β-responsive miR-153 targets SNAREs, beta cell specific TFs and other key factors to eventually causes beta cell failure. Inhibiting miR-153 with Antago-miR-153 prevents hyperglycaemia in db/db mice, indicating that miR-153 may be a promising therapeutic target for the treatment of inflammation-associated diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.