Abstract

ABSTRACTAim of the Study: MicroRNA-21 (miR-21) is up-regulated during allergic airway inflammation, reflecting a Th2 immune response. We investigated the effects of an miR-21 antagomir and its mechanism of action in a mouse model of acute bronchial asthma. Materials and Methods: BALB/c mice were sensitized and challenged with ovalbumin (OVA). The anti-miR-21 antagomir was administered by intranasal inhalation from the day of sensitization. Changes in cell counts, Th2 cytokine levels in bronchoalveolar (BAL) fluid, and airway hyper-responsiveness (AHR) were examined. Histopathological changes and expression levels of miR-21 in lung tissues were analyzed. The mechanism of action of the antagomir was investigated by counting CD4+/CD8− T cells in splenocytes and by measuring the expression levels of transcription factors associated with T cell polarization. Results: MiR-21 expression was selectively down-regulated in the lung tissues of mice treated with anti-miR-21. The antagomir suppressed AHR compared with that of the OVA-challenged and scrambled RNA-treated groups. It also reduced the total cell and eosinophil counts in BAL fluid and the levels of Th2 cytokines, including IL-4, IL-5, and IL-13. The direct target of miR-21, IL-12p35, was induced in the antagomir-treated group, decreasing the CD4+/CD8− T cell proportions in splenocytes. The levels of transcription factors involved in the Th2-signaling pathway were reduced in lung tissues on treatment with the antagomir. Conclusions: The miR-21 antagomir suppresses the development of allergic airway inflammation in a mouse model of acute bronchial asthma, inhibiting Th2 activation. These results suggest that this antagomir might be useful for treating bronchial asthma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.