Abstract
Parthenolide is selectively toxic to leukemia cells; however, it also activates cell protective responses that may limit its clinical application. Therefore, we sought to identify agents that synergistically enhance parthenolide's cytotoxicity. Using a high-throughput combination drug screen, we identified the anti-hyperglycemic, vildagliptin, which synergized with parthenolide to induce death of the leukemia stem cell line, TEX (combination index (CI)=0.36 and 0.16, at effective concentration (EC) 50 and 80, respectively; where CI <1 denotes statistical synergy). The combination of parthenolide and vildagliptin reduced the viability and clonogenic growth of cells from acute myeloid leukemia patients and had limited effects on the viability of normal human peripheral blood stem cells. The basis for synergy was independent of vildagliptin's primary action as an inhibitor of dipeptidyl peptidase (DPP) IV. Rather, using chemical and genetic approaches we demonstrated that the synergy was due to inhibition of the related enzymes DPP8 and DPP9. In summary, these results highlight DPP8 and DPP9 inhibition as a novel chemosensitizing strategy in leukemia cells. Moreover, these results suggest that the combination of vildagliptin and parthenolide could be useful for the treatment of leukemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.