Abstract

The tricyclic compound cyproheptadine (Periactinol, Nuran) inhibited glucose-induced insulin release from the perfused rat pancreas. Tolbutamide-stimulated insulin release was significantly reduced in the presence and completely suppressed in the absence of a substimulatory glucose concentration (5 mM). Arginine produced a slow rise of insulin release, which was completely abolished by cyproheptadine. Furthermore the biphasic glucagon release due to the stimulus was inhibited. Oxidation of 14C-glucose in isolated islets was unaltered in the presence of cyproheptadine, and pyruvate added to the perfusion medium failed to reverse the inhibitory effect on glucose induced insulin release, indicating that impaired glucose metabolism is not responsible for the inhibition. In addition, the inhibition remained unchanged when phentolamine was present, suggesting that the effect is not mediated by inhibitory adrenergic alpha receptors. Theophylline, in contrast, partly overcame the inhibition. When the calcium concentration of the medium was enhanced, the inhibitory effect of cyproheptadine was still visible, although the relative inhibition had become smaller. The results suggest that cyproheptadine blocks insulin release by affecting a fundamental step of the stimulus-secretion coupling common to peptide hormones. A participation of a calcium-antagonizing effect in the inhibition is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.