Abstract

BackgroundCoxsackievirus B3 (CVB3), a member of the picornavirus family, is one of the major causative enteroviruses of viral myocarditis. The aim of the current study was to investigate the role and underlying mechanism of iNOS and autophagy in CVB3 infected cardiomyocytes. MethodsMyocardial cell H9c2 were randomly divided into four groups: control group, CVB3 group, CVB3+L-NAME group and the CVB3+iNOS siRNA group. Cell proliferation was detected by MTT method and cell apoptosis was determined by flow cytometric. The protein expression levels were determined by Western blot. Anisomycin was used to activate JNK pathway in CVB3 infected H9c2 cells. ResultsThe results demonstrated that the inhibition of iNOS significantly elevated cell proliferation and suppressed cell apoptosis of CVB3-induced H9c2 cells. The production of MDA was obviously decreased, while the activity of SOD was increased by the addition of L-NAME or iNOS siRNA compared with the CVB3 group. Expression of the autophagy marker proteins LC3 II and Beclin 1 was significantly decreased, and the autophagy substrate p62 was dramatically increased in iNOS inhibition groups compared with the CVB3 group. Moreover, iNOS inhibition suppressed the JNK pathway in CVB3-infected H9c2 cells. Furthermore, administration of the JNK pathway stimulator, anisomycin, counteracted the effect of iNOS inhibition in CVB3-infected H9c2 cells. ConclusionThe inhibition of iNOS protects cardiomyocytes against CVB3-induced cell injury by regulating autophagy and the JNK pathway, which may provide a novel therapeutic strategy for treating CVB3-induced myocarditis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.