Abstract

Mineralocorticoid receptors in the inner medullary collecting duct (IMCD) are protected from glucocorticoid binding by an enzyme, 11 beta-hydroxysteroid dehydrogenase type 2 (11 beta-HSD2). To study the role of 11 beta-HSD2 in acid-base homeostasis, 11 beta-HSD2 activity was measured in rat IMCD-enriched cell suspensions. Homogenates of cell suspensions were incubated in buffers ranging in pH from 6.00 to 8.15 in the presence of 1 microCi of 3H-corticosterone (CS) and 400 microM NAD+. Enzyme activity was expressed as the amount of 3H-CS converted to 3H-11-dehydrocorticosterone (DHCS). IMCD 11 beta-HSD2 activity at pH 6.5 was 49% of activity at pH 7.5; 22.5 versus 11.0 fmol/microgram of protein per h. Experiments also were performed on intact cell suspensions at pH 7.5 and 6.5. There was a 42% inhibition in the IMCD cell suspension conversion rate of 3H-CS to 3H-11-DHCS at pH 6.5; 13.1 versus 7.6 fmol/microgram per h (P < 0.005). In cell suspensions at pH 7.5, 1-day acid loading caused a 26% inhibition in conversion rate, 13.2 versus 9.9 fmol/microgram per h (P < 0.05), when compared with controls. These results suggest that during acute metabolic acidosis, IMCD 11 beta-HSD2 is inhibited and may allow access to the mineralocorticoid receptors by glucocorticoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.