Abstract

Thrombopoietin (TPO) regulates megakaryocytic (MK) maturation and platelet production. Molecular and cellular mechanisms of the TPO-induced MK differentiation are not totally understood. In order to develop cellular models to study these mechanisms, we introduced c-mpl into UT-7 and TF-1 cells by means of a retroviral vector and compared the effects of TPO on these two cell lines. UT-7 and TF-1 cell lines are two factor-dependent leukemic cell lines with an erythroid and MK phenotype. They proliferate in response to IL-3, GM-CSF and EPO, but not to TPO. The erythroid differentiation of both cell lines can be markedly increased by EPO. Several UT-7/c-mpl and TF-1/c-mpl cell clones which express different levels of the c-mpl protein (Mpl) were obtained and all became TPO-dependent for their proliferation. The UT-7/c-mpl clones, but not the TF-1/c-mpl clones, were capable of undergoing MK differentiation in response to TPO. This was demonstrated by the increase in MK markers (GPIIb, GPIIIa, GPIb alpha, GPIX and vWF), the appearance of cytoplasmic alpha-granules, intracellular membranes resembling demarcation membranes which were immunologically labeled with an GPIIb/IIIa anti-antibody, and a small percentage of polyploid cells (8N and 16N). In contrast, TPO inhibited the erythroid program of differentiation (glycophorin A, beta-globin and EPO receptor) as well as the differentiative activity of EPO in both UT-7/c-mpl and TF-1/c-mpl clones. It is noteworthy that the differentiative effect of EPO in TF-1/c-mpl cells was associated with an increase in GATA-1 transcripts which was totally suppressed by TPO. Overall the effects of TPO are the same as those of phorbol myristate acetate (PMA) which also induces MK differentiation and inhibits erythroid differentiation. These results suggest that: (1) Mpl expression is necessary but not sufficient for induction of MK differentiation; and (2) induction of Mk differentiation and inhibition of erythroid differentiation by TPO involve different signaling pathways; the pathway involved in the inhibition of erythroid differentiation might be related to a downregulation of GATA-1 expression in TF-1 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.