Abstract
The effect of methylglyoxal on the oxygen consumption of Ehrlich-ascites-carcinoma (EAC)-cell mitochondria was tested by using different respiratory substrates, electron donors at different segments of the mitochondrial respiratory chain and site-specific inhibitors to identify the specific respiratory complex which might be involved in the inhibitory effect of methylglyoxal on the oxygen consumption by these cells. The results indicate that methylglyoxal strongly inhibits ADP-stimulated alpha-oxo-glutarate and malate plus pyruvate-dependent respiration, whereas, at a much higher concentration, methylglyoxal fails to inhibit succinate-dependent respiration. Methylglyoxal also fails to inhibit respiration which is initiated by duroquinol, an artificial electron donor. Moreover, methylglyoxal cannot inhibit oxygen consumption when the NNN'N'-tetramethyl-p-phenylenediamine by-pass is used. The inhibitory effect of methylglyoxal is identical on both ADP-stimulated and uncoupler-stimulated respiration. Lactaldehyde, a catabolite of methylglyoxal, can exert a protective effect on the inhibition of EAC-cell mitochondrial respiration by methylglyoxal. We suggest that methylglyoxal possibly inhibits the electron flow through complex I of the EAC-cell mitochondrial respiratory chain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.