Abstract

The oxime derivative 2,3-butanedione monoxime (BDM) is used as an inorganic phosphatase to probe the phosphorylation state of many cellular proteins including the L-type calcium channel in various tissues. We used BDM further to shed light on the controversy surrounding direct phosphorylation of the L-type Ca2+channel. We employed a recombinant system that utilizes HEK 293 cells expressing wild type and mutant human heart calcium channels. BDM reversibly reduced the calcium channel current induced by expression of the wild type channel in a concentration-dependent manner with an apparent IC50value of 15.3 mM. Deletion of part of the carboxyl terminus of the α1subunit, which contains one putative protein kinase A site, or mutating all of the protein kinase A consensus sites of the pore forming subunit, did not significantly change the apparent IC50value or alter in any other way the blocking effect of BDM on the expressed currents. Our data suggest that BDM produces reversible modifications of the cardiac calcium channel protein leading to an expected reduction in the amplitude of the expressed currents, but the site of action must be different from that of the consensus sites for protein kinase A dependent phosphorylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.