Abstract

Two squalene derivatives, trisnorsqualene cyclopropylamine and trisnorsqualene N-methylcyclopropylamine, were synthesized and tested for inhibition of lanosterol and squalene epoxide formation from squalene in rat hepatic microsomes, and for the inhibition of cholesterol synthesis in human cultured hepatoblastoma (HepG2) cells. Trisnorsqualene cyclopropylamine inhibited [3H]-squalene conversion to [3H]squalene epoxide in microsomes (IC50 = 5.0 microM), indicating that this derivative inhibited squalene mono-oxygenase. Trisnorsqualene N-methylcyclopropylamine inhibited [3H]squalene conversion to [3H]lanosterol (IC50 = 12.0 microM) and caused [3H]-squalene epoxide to accumulate in microsomes, indicating that this derivative inhibited 2,3-oxidosqualene cyclase. Cholesterol biosynthesis from [14C]acetate in HepG2 cells was inhibited by both derivatives (IC50 = 1.0 microM for trisnorsqualene cyclopropylamine; IC50 = 0.5 microM for trisnorsqualene N-methylcyclopropylamine). Cells incubated with trisnorsqualene cyclopropylamine accumulated [14C]squalene, while cells incubated with trisnorsqualene N-methylcyclopropylamine accumulated [14C]squalene epoxide and [14C]squalene diepoxide. The concentration range of inhibitor which caused these intermediates to accumulate coincided with that which inhibited cholesterol synthesis. The results indicate that cyclopropylamine derivatives of squalene are effective inhibitors of cholesterol synthesis, and that substitutions at the nitrogen affect enzyme selectivity and thus the mechanism of action of the compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.