Abstract

Non-small cell lung cancer (NSCLC) is the most common cancer in the world. Gefitinib, an inhibitor of EGFR tyrosine kinase, is highly effective in treating NSCLC patients with activating EGFR mutations (L858R or Ex19del). However, despite excellent disease control with gefitinib therapy, innate resistance and inevitable acquired resistance represent immense challenges in NSCLC therapy. Gefitinib potently induces cytoprotective autophagy, which has been implied to contribute to both innate and acquired resistance to gefitinib in NSCLC cells. Currently, abrogation of autophagy is considered a promising strategy for NSCLC therapy. In the present study, YC-1, an inhibitor of HIF-1α, was first found to significantly inhibit the autophagy induced by gefitinib by disrupting the fusion of autophagosomes and lysosomes and thereby enhancing the proapoptotic effect of gefitinib in gefitinib-resistant NSCLC cells. Furthermore, the combinational anti-autophagic and pro-apoptotic effect of gefitinib and YC-1 was demonstrated to be associated with an enhanced of forkhead box protein O1 (FOXO1) transcriptional activity which resulted from an increase in the p-FOXO1 protein level in gefitinib-resistant NSCLC cells. Our data suggest that inhibition of autophagy by targeting FOXO1 may be a feasible therapeutic strategy to overcome both innate and acquired resistance to EGFR-TKIs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.