Abstract

Leishmania major (L. major) applies several mechanisms to escape the immune system. Interleukin-10 (IL-10) and Transforming Growth Factor (TGF-β) downregulate nitric oxide synthase (iNOS) leading to the survival of Leishmania within macrophages. The miRNAs are known as the modulators of the immune system. The present study was conducted to assess the effect of synthetic miR-340 mimic on cytokines (IL-10 and TGF-β1) involved in L. major infected macrophages. The miRNAs targeting of IL-10 and TGF-β1 was predicted using bioinformatic tools. Relative expression of predicted miRNA, IL-10, and TGF-β1 was measured by RT-qPCR before and after synthetic miRNA mimic transfection. Concentration of IL-10 and TGF-β was measured in posttreatment condition using ELISA method. Also, infectivity was assessed by Giemsa staining. mmu-miR-340 received the highest score for targeting cytokines. The expression of miR-340 was downregulated in L. major infected macrophages. By contrast, expression of IL-10 and TGF-β1 was upregulated in infected macrophages. After miRNA transfection, TGF-β1 and IL-10 were both downregulated and interestingly, the combination of miR-340 and miR-27a had a stronger effect on the downregulation of target genes. This research revealed that transfection of infected macrophages with miR-340 alone or in combination with miR-27a mimic can reduce macrophage infectivity and might be introduced as a novel therapeutic agent for cutaneous leishmaniasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.