Abstract

Chickpea (Cicer arietinum L.), the second largest grown pulse crop of the world, is an important source of protein for millions of people, particularly in South Asia. Development of chickpea cultivars with further enhanced levels of protein is highly desired. This study was aimed at understanding the genetic control of protein content and its association with other traits so that suitable breeding strategies can be prepared for development of high protein content cultivars. A high protein (29.2 %) desi chickpea line ICC 5912 with pea-shaped small seed, grey seed coat and blue flower was crossed with a low protein (20.5 %) kabuli line ICC 17109 with owl’s head shaped large seed, beige seed coat, and white flower. The F2 population was evaluated under field conditions and observations were recorded on protein content and other traits on individual plants. The protein content of F2 segregants showed continuous distribution suggesting that it is a quantitative trait controlled by multiple genes. The blue flowered segregants had pea shaped seed with grey seed coat, while the white flowered segregants had owl’s head shaped seed with beige seed coat indicating pleiotropic effects of gene(s) on these traits. On an average, blue flowered segregants had smaller seed, lower grain yield per plant and higher protein content than the pink flowered and the white flowered segregants. The protein content was negatively correlated with seed size (r = −0.40) and grain yield per plant (r = −0.18). Thus, an increment in protein content is expected to have a negative effect on seed size and grain yield. However, careful selection of transgressive segregants with high protein content along with moderate seed size and utilizing diverse sources of high protein content will be usefull in developing chickpea cultivars with high protein content and high grain yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.