Abstract

Background: The understanding of the real flow profiles through a dry powder inhaler (DPI), generated by asthma patients, is a prerequisite for satisfactory drug delivery to the lungs. The aims of the study were to assess the relationship between spirometric measures and inhalation profiles through a low-resistance DPI, and to compare parameters of those profiles between optimal and suboptimal inhalation technique type. Methods: Both healthy adult volunteers and patients with asthma were included in the study. Spirometry was conducted along with modified flow-volume test to detect expiratory levels (maximum "100%" exhalation to residual volume [RV] and halfway "50%" to RV). These were the reference levels of the depth of exhalation for each patient to simulate the effect of incomplete exhalation. Individual inhalation profiles were recorded using spirometry in-house software as the volumetric airflow through the inhaler versus time. Inspiratory flow parameters were extracted: time to peak inspiratory flow through inhaler (PIFinh), time at which peak inspiratory flow occurs (tPIFinh), total inhalation time (T), and inhaled volume during maneuver (V). Results and Conclusions: There are significant relationships between spirometric indices and parameters of inhalation through a low-resistance, cyclohaler-type DPI (assessed by single-factor analysis of Spearman's rank correlation coefficient). Multiple regression models were constructed, predicting inspiratory flow parameters (including spirometric indices, demographic parameters, and inhaler's usage history as determinants). The exhalation halfway to RV before inhalation did not affect significantly PIFinh and tPIFinh (and, thus, initial flow dynamics) in asthma patients. T and V parameters were then significantly decreased, but seemed sufficient for successful DPI performance. Both exhalation to RV and incomplete exhalation halfway to RV preceding inhalation allow for effective usage of low-resistance DPI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.