Abstract
Wafer bonding and hydrogen implantation exfoliation techniques have been used to fabricate a thin InP template layer on GaAs with intermediate silicon nitride bonding layers. This template layer was used to directly compare subsequent metal organic vapor phase epitaxial growth of InGaAs∕InAlAs quantum-well structures on these wafer-bonded templates to growth on a standard InP substrate. Chemical mechanical polishing of the bonded structure and companion InP substrates was assessed. No effects from the coefficient of thermal mismatch are detected up to the growth temperature, and compositionally equivalent structures are grown on the wafer-bonded InP template and the bare InP substrate. However, after growth dislocation, loops can be identified in the InP template layer due to the ion implantation step. These defects incur a slight mosaic tilt but do not yield any crystalline defects in the epitaxial structure. Low-temperature photoluminescence measurements of the InGaAs grown on the template structure and the InP substrate exhibit near-band-edge luminescence on the same order; this indicates that ion implantation and exfoliation is a viable technique for the integration of III-V materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.