Abstract

We demonstrate a single-photon detector based on InGaAs/InP single-photon avalanche diodes (SPADs) sinusoidal-gated at 1.3 GHz with very low afterpulsing (about 1.5%), high dynamic range (maximum count rate is 650 Mcount/s), high photon detection efficiency (>30% at 1550 nm), low noise (per-gate dark count rate is 2.2 × 10−5), and low timing jitter (<70 ps full-width at half-maximum). The SPAD is paired with a “dummy” structure that is biased in antiphase. The sinusoidal gating signals are cancelled by means of a common-cathode configuration and by adjusting the relative amplitude and phase of the signals biasing the two arms. This configuration allows us to adjust the gating frequency from 1 to 1.4 GHz and can be operated also in the so-called gate-free mode, with the gate sine-wave unlocked with respect to the light stimulus, resulting in a free-running equivalent operation of the InGaAs/InP SPAD with about 4% average photon detection efficiency at 1550 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.