Abstract

Infrared spectra of a carbon disulfide trimer formed in a pulsed supersonic slit-jet expansion are obtained via direct absorption of a tuneable diode laser in the region of the CS(2)ν(3) fundamental (∼1535 cm(-1)). This is the first high-resolution spectroscopic observation of (CS(2))(3). Two bands sharing the same lower state are assigned to ((12)C(32)S(2))(3). These correspond to the two infrared active trimer vibrations (a parallel and a perpendicular band) of the constituent CS(2) monomer asymmetric stretches. The weaker perpendicular band is centered at 1524.613 cm(-1), shifted by -10.74 cm(-1) with respect to the free CS(2) monomer. The parallel band is centered at 1545.669 cm(-1), a vibrational shift of +10.31 cm(-1). Transitions with K≠ 3n and those with K = 0, J = odd in the ground state are absent, establishing that this trimer has D(3) symmetry. The two parameters required to define this structure are determined to be 3.811 Å for the C-C bond distance and 61.8° for the angle between a monomer axis and the plane containing the C atoms. In addition, a parallel band arising from trimers with a single (34)S substitution is observed around 1544.46 cm(-1). Together with the recently observed cross-shaped CS(2) dimer, these results indicate a tendency for CS(2) to form highly symmetric clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.