Abstract
The spectra of pure, mixed and layered CO and CO2 ices have been studied systematically under laboratory conditions using Transmission-Absorption Fourier Transform infrared spectroscopy. This work provides improved resolution spectra (0.5 cm-1) of the CO2 bending and asymmetric stretching mode, as well as the CO stretching mode, extending the existing Leiden databasea of laboratory spectra to match the spectral resolution reached by modern telescopes and to support the interpretation of the most recent data from the Spitzer Space Telescope. It is shown that mixed and layered CO and CO2 ices exhibit very different spectral characteristics, which depend critically on thermal annealing and can be used to distinguish between mixed, layered and thermally annealed CO-CO2 ices. CO only affects the CO2 bending mode spectra in mixed ices below 50 K under the current experimental conditions, where it exhibits a single asymmetric band profile in intimate mixtures. In all other ice morphologies the CO2 bending mode shows a double peaked profile, similar to that observed for pure solid CO2. Conversely, CO2 induces a blue-shift in the peak-position of the CO stretching vibration, to a maximum of 2142 cm-1 in mixed ices, and 2140–2146 cm-1 in layered ices. As such, the CO2 bending mode puts clear constraints on the ice morphology below 50 K, whereas beyond this temperature the CO2 stretching vibration can distinguish between initially mixed and layered ices. This is illustrated for the low-mass young stellar object HH 46, where the laboratory spectra are used to analyse the observed CO and CO2 band profiles and try to constrain the formation scenarios of CO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.