Abstract

Reactions of laser-ablated Fe, Ru, and Pt atoms with acetonitrile have been carried out in excess argon, and the products identified in the matrix spectra. CH3CN→Fe and Fe-η2-(NC)-CH3 observed in the original deposition spectra converted to CH3-FeNC on uv irradiation. CH3CN→Ru, the only product detected in the Ru system, dissociated on uv irradiation, but was partly reproduced on subsequent visible irradiation and annealing. Similar behavior was found for CH3CN→Pt. The major products (CH3-FeNC, CH3CN→Ru, and CH3CN→Pt) are the most stable constituents in the previously proposed reaction path for Group 4, 5, 6, and 7 metal atoms and acetonitrile, parallel with the previous results. The Group 8 metal π-coordination products are weakly bound complexes due to limited back-donation to the π*-orbitals of CH3CN. Calculations show that the Fe insertion product has a much less bent structure than the Ru analogue, in line with its higher s-character from the first row transition-metal to the C-Fe bond, and the group 8 metal methylidenes are not agostically distorted. The Pt to N bond in CH3CN→Pt is the strongest of all the metals we have investigated owing in large part to its higher electron affinity, which prevents nitrogen lone pair density from entering the pi* orbitals of the C-N group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.