Abstract

Reactions of laser-ablated Mg, Ca, Sr, and Ba atoms with O2 and H2 in excess argon give new absorptions in the O-H and O-M-O stretching regions, which increase together upon UV photolysis and are due to the M(OH)2 molecules (M = Mg, Ca, Sr, and Ba). The same product absorptions are observed in the metal atom reactions with H2O2. The M(OH)2 identifications are supported by isotopic substitution and theoretical calculations (B3LYP and MP2). The O-H stretching frequencies of the alkaline earth metal dihydroxide molecules decrease from 3829.8 to 3784.6 to 3760.6 to 3724.2 cm(-1) in the family series in solid argon, while the base strength of the solid compounds increases. Calculations show that Sr(OH)2 and Ba(OH)2 are bent at the metal center, owing to d orbital involvement in the bonding. Although these molecules are predominantly ionic, the O-H stretching frequencies do not reach the ionic limit of gaseous OH- going down the family group because of cation-anion polarization and p(pi) --> d(pi) interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.