Abstract

This paper discusses the formation mechanisms of infrared radiation in the mesosphere and lower thermosphere (MLT), the energetic effects of the radiative absorption/emission processes, and the retrieval of atmospheric parameters from infrared radiation measurements. In the MLT and above, the vibrational levels of the molecules involved in radiative transitions are not in local thermodynamic equilibrium (LTE) with the surrounding medium, and this then requires specific theoretical treatment. The non-LTE models for CO2, O3, and H2O molecules are presented, and the radiative cooling/heating rates estimated for five typical atmospheric scenarios, from polar winter to polar summer, are shown. An optimization strategy for calculating the cooling/heating rates in general circulation models is proposed, and its accuracy is estimated for CO2. The sensitivity of the atmospheric quantities retrieved from infrared observations made from satellites to the non-LTE model parameters is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.