Abstract

Mass-selected heteronuclear iron-copper carbonyl cluster anions CuFe(CO)n(-) (n = 4-7) are studied by infrared photodissociation spectroscopy in the carbonyl stretching frequency region in the gas phase. The cluster anions are produced via a laser vaporization supersonic cluster ion source. Their geometric structures are determined by comparison of the experimental spectra with those calculated by density functional theory. The experimentally observed CuFe(CO)n(-) (n = 4-7) cluster anions are characterized to have (OC)4Fe-Cu(CO)n-4 structures, each involving a C3v symmetry Fe(CO)4(-) building block. Bonding analysis indicates that the Fe-Cu bond in the CuFe(CO)n(-) (n = 4-7) cluster anions is a σ type single bond with the iron center possessing the most favored 18-electron configuration. The results provide important new insight into the structure and bonding of hetronuclear transition metal carbonyl cluster anions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.