Abstract

This paper considers the infrared characteristic radiation (IRCR) during the first order phase transitions (crystallization, condensation and sublimation) of water. Experimental results are analyzed in terms of their correspondence to the theoretical model. This model is based on the assumption that the particle's (atom, molecule, or cluster) transition from the higher energetic level in a metastable phase (vapor or liquid) to a lower level in a stable phase (liquid or crystal) produces an emission of one or more photons. The energy of these photons depends on the latent energy of the phase transition and the character of bonds formed by the particle in the new phase. For all investigated substances, this energy falls in the infrared range. Recorded in the atmosphere, many sources of the infrared radiation seem to be a result of crystallization, condensation and sublimation of water during fog and cloud formation. The effect under investigation must play a very important role in atmospheric phenomena: it is one of the sources of Earth's cooling; formation of hailstorm clouds is accompanied by intensive characteristic infrared radiation that could be detected for process characterization and meteorological warnings. IRCR seems to be used for atmospheric energy accumulation and together with the wind, falling water, solar and geothermal energies makes available the fifth source of ecologically pure energy. This phenomenon may either be used to search the water in the atmospheres of other planets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.