Abstract

The low energy conformations of the three tautomers, imine-enol, enamine-keto and imine-keto forms of the title compound have been determined at the B3LYP/6-31+G(d) level of theory using the relaxed PES scan method and their geometries have been refined at B3LYP/6-311+G(d,p) and PBE0/6-311+G(d,p) levels. The results show that the title compound exists in the imine-enol tautomeric form, in contrast to the enamine-keto form which exists in the solid crystalline state, followed by enamine-keto and imine-keto forms with extremely low abundances. The geometry parameters of all tautomeric forms calculated at PBE0/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels have been compared with those from the experimental X-ray diffraction. The vibrational (FT-IR and Raman) spectroscopic studies of the most stable tautomer, enamine-keto form have been carried out. The assignment of the fundamental bands observed in the IR and Raman spectra have been facilitated by the SQM force field procedure. The frequencies from SQM procedure have a very good fit to the experimental ones. The total root-mean-square error is only ca. 11cm−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.