Abstract

We present a theoretical study of infrared and Raman line shapes of polycrystalline and single crystal ice Ih, for both water and heavy water, at 1, 125, and 245 K. Our calculations involve a mixed quantum/classical approach, a new water simulation model with explicit three-body interactions, transition frequency and dipole maps, and intramolecular and intermolecular vibrational coupling maps. Our theoretical spectra are in reasonable agreement with experimental spectra (available only near the two higher temperatures). We trace the origins of the different spectral peaks to weak and strong intermolecular couplings. We also discuss the delocalization of the vibrational eigenstates in terms of the competing effects of disorder and coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.