Abstract
We study the informational content of factor structures in discrete triangular systems. Factor structures have been employed in a variety of settings in cross sectional and panel data models, and in this paper we formally quantify their identifying power in a bivariate system often employed in the treatment effects literature. Our main findings are that imposing a factor structure yields point identification of parameters of interest, such as the coefficient associated with the endogenous regressor in the outcome equation, under weaker assumptions than usually required in these models. In particular, we show that a non-standard exclusion restriction that requires an explanatory variable in the outcome equation to be excluded from the treatment equation is no longer necessary for identification, even in cases where all of the regressors from the outcome equation are discrete. We also establish identification of the coefficient of the endogenous regressor in models with more general factor structures, in situations where one has access to at least two continuous measurements of the common factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.