Abstract

Todas information and communication network requires a design that is secure to tampering. Traditional performance measures of reliability and throughput must be supplemented with measures of security. Recognition of an adversary who can inflict damage leads toward a game-theoretic model. Through such a formulation, guidelines for network designs and improvements are derived. We opt for a design that is most robust to withstand both natural degradation and adversarial attacks. Extensive computational experience with such a model suggests that a Nash-equilibrium design exists that can withstand the worst possible damage. Most important, the equilibrium is value-free in that it is stable irrespective of the unit costs associated with reliability vs. capacity improvement and how one wishes to trade between throughput and reliability. This finding helps to pinpoint the most critical components in network design. From a policy standpoint, the model also allows the monetary value of information-security to be imputed. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.