Abstract
Schema matching is the problem of finding correspondences (mapping rules, e.g. logical formulae) between heterogeneous schemas e.g. in the data exchange domain, or for distributed IR in federated digital libraries. This paper introduces a probabilistic framework, called sPLMap, for automatically learning schema mapping rules, based on given instances of both schemas. Different techniques, mostly from the IR and machine learning fields, are combined for finding suitable mapping candidates. Our approach gives a probabilistic interpretation of the prediction weights of the candidates, selects the rule set with highest matching probability, and outputs probabilistic rules which are capable to deal with the intrinsic uncertainty of the mapping process. Our approach with different variants has been evaluated on several test sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.