We argue that if black hole entropy arises from a finite number of underlying quantum states, then any particular such state can be identified from infinity. The finite density of states implies a discrete energy spectrum, and, in general, such spectra are non-degenerate except as determined by symmetries. Therefore, knowledge of the precise energy, and of other commuting conserved charges, determines the quantum state. In a gravitating theory, all conserved charges including the energy are given by boundary terms that can be measured at infinity. Thus, within any theory of quantum gravity, no information can be lost in black holes with a finite number of states. However, identifying the state of a black hole from infinity requires measurements with Planck scale precision. Hence observers with insufficient resolution will experience information loss.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call