Abstract
This paper examines local influence assessment in generalized autoregressive conditional heteroscesdasticity models with Gaussian and Student-t errors, where influence is examined via the likelihood displacement. The analysis of local influence is discussed under three perturbation schemes: data perturbation, innovative model perturbation and additive model perturbation. For each case, expressions for slope and curvature diagnostics are derived. Monte Carlo experiments are presented to determine the threshold values for locating influential observations. The empirical study of daily returns of the New York Stock Exchange composite index shows that local influence analysis is a useful technique for detecting influential observations; most of the observations detected as influential are associated with historical shocks in the market. Finally, based on this empirical study and the analysis of simulated data, some advice is given on how to use the discussed methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.