Abstract

The effects of melt flow driven by a travelling magnetic field (TMF) on solidification structures of Sn–1.8 wt.% Cd peritectic alloy have been investigated numerically and experimentally. Numerical results indicate that the flow velocity at the solid–liquid interface under a downward TMF is smaller than that under an upward TMF. The experimental results show that the growth directions of dendrites are chaotic, and several crotches among the dendrites are observed at the solid–liquid interface in the case of no field. It is concluded from TMF results that the ordered growth of dendrites at two different directions occurs, and only one crotch among the dendrites appears at the solid–liquid interface. The location of the crotch gradually approaches the interface center with increasing magnetic field intensity (B≤10.3 mT). Moreover, the growth of high-order branches occurs at the crotch under a downward TMF. A simple model is established for explanation and it well corresponds to the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.