Abstract
Si and Si/Ti films were fabricated on a Cu current collector (substrate) using the DC sputtering system. The Ti film as a buffer layer was inserted between the Si film and the Cu current collector. Their structural and electrochemical properties were investigated with various Ti film thicknesses of 20-90 nm. The Si and Ti films deposited on a polycrystalline Cu substrate were amorphous. The Si/Ti/Cu film electrode exhibited better electrochemical properties than the Si/Cu electrode in terms of capacity, charge-discharge efficiency, and cycleability. In the Si/Ti/Cu electrode, the film electrode with a 55 nm Ti film thickness showed the best electrochemical properties: 367 microA h/cm2 initial capacity, 91% efficiency, and 50% capacity retention after 100 cycles. These good electrochemical properties are attributed to the enhanced adhesion between the Si and Ti films. Additionally, the modified surface morphology of Si film with a cluster structure could withstand the lateral volume change during the charge-discharge process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.