Abstract
We have investigated the effects of silicon doping concentration within thirty-period self-assembled quantum dot (QD) layers on quantum dot infrared photodetectors (QDIPs). The lens-shaped quantum dots with the dot density of 1 × 10 11 cm − 2 were observed by atomic force microscope (AFM). From the high ratio of photoluminescence (PL) peak intensities from dot layer to that from wetting layer, we have concluded that high dot density caused the short diffusion length for carriers to be easily captured by QDs. Moreover, the Si-doped samples exhibited the multi-state transitions within the quantum dots, which were different to the single level transition of undoped sample. Besides, the dominant PL peaks of Si-doped samples were red-shifted by about 25 meV compared to that of the undoped sample. It should result from the dopant-induced lowest transition state and therefore, the energy difference should be equal to the binding energy of Si in InAs QDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.