Abstract
Supercritical water gasification (SCWG) is a promising technology for converting organic wastes to hydrogen. Less amount of oxygen is beneficial for increasing hydrogen generation rate. However, the corrosion rate of reactor material would be accelerated. TiO2 coating with a thickness of 0.1 mm was prepared on the surface of 316L stainless steel (SS316L) to improve its corrosion resistance in supercritical water (SCW). The corrosion performances of TiO2/SS316L were tested in a bath SCW reactor at 400 °C, 25 MPa. The influences of oxygen concentration (0–1000 mg/L) on surface morphologies and corrosion depths were studied thoroughly. Results indicated that the surface of TiO2/SS316L exhibited cracks and pores after exposed in SCW. And the average corrosion rates accelerated at higher oxygen concentrations. The interface between the coating and medium was relatively smooth and there was no obvious change in the thickness of the coating with oxygen concentration of 0 and 500 mg/L. While for that with 1000 mg/L oxygen, the surface of TiO2/SS316L exhibited reticulate crack. The cross section showed a serrate structure, and only 0.08 mm thick of the coating was remained. In addition, the corrosion mechanism of coating was discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.