Abstract
The influence of extracellular folate concentration on cellular levels of the folate transport protein and its soluble product was studied directly in cultured human nasopharyngeal carcinoma (KB) cells. As determined by radioimmunoassay, levels of the folate transport protein and the soluble folate-binding protein were 58 +/- 17 (mean +/- SD) and 5 +/- 2 pmol/mg cell protein, respectively, in KB cells maintained in standard medium (containing 2,300 nM folic acid). These levels significantly increased to 182 +/- 34 and 26 +/- 6 pmol/mg cell protein, respectively, in KB cells serially passaged in low folate medium (containing 2-10 nM 5-methyltetrahydrofolate). Increases in folate-binding protein levels occurred more rapidly in KB cells serially passaged in very low folate medium containing less than 2 nM folate and were prevented by the addition of 100 nM 5-methyltetrahydrofolate or 0.1-1 microM 5-formyltetrahydrofolate to this medium. When KB cells which had been passaged in low folate medium were passaged back into either standard medium or low folate medium supplemented with reduced folates, the levels of both folate-binding proteins fell linearly towards the levels in KB cells continuously maintained in standard medium. The folate transport protein was identified in and underwent similar changes in human and mouse mammary tumor cells. These studies indicate that the folate transport system is probably regulated by the extracellular folate concentration through changes in intracellular metabolite levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.