Abstract

ObjectiveZinc oxide is used to prevent post-weaning diarrhoea in pigs as an alternative to antimicrobial growth promoters. This study aims to determine if the use of zinc oxide selects for extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and affects the expression of blaCTX-M-1 in E. coli. MethodsUsing an in vitro faecal micro-cosmos model, the selective properties of zinc were investigated using an E. coli strain with blaCTX-M-1 encoded by a natural IncI1 resistance plasmid (MG1655/pTF2) and another strain where the same gene was located on the chromosome (MG1655::blaCTX-M-1). The micro-cosmos was seeded with faecal material containing an increasing concentration of zinc (0–8 mM). Outcome measurements consisted of colony-forming units (CFU) of the inoculated ESBL E. coli and naturally occurring coliforms as determined by plate counting on MacConkey with and without 5 mg/L cefotaxime as well as total viable bacteria determined on Luria agar without cefotaxime. Expression of blaCTX-M-1 under the experimental zinc concentrations was determined by quantitative polymerase chain reaction. ResultsThe proportion of MG1655/pTF2 of the total viable bacteria was significantly higher at high zinc concentrations (6 and 8 mM) compared with low concentrations (0–4 mM). The messenger RNA (mRNA) levels of blaCTX-M-1 in the two ESBL strains increased at increasing zinc concentrations and varied with the growth phase. ConclusionThe growth of the inoculated CTX-M-1-encoding E. coli MG1655 strains and naturally occurring coliforms was impacted differently when exposed to zinc oxide. The blaCTX-M-1 mRNA expression levels seemed to increase with increasing zinc concentrations, but varied with growth phase, but not gene location.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.