Abstract

This work was focused to study the existence of Zn2+ in structure, chemical composition as well as particle and crystallite size of hydroxyapatite (HAp) to characterize the effect of pH of the solution and calcination temperature. Non-stoichiometric HAp (nHAp) powders containing 4 at.% zinc fraction were synthesized via solution–precipitation method. In order to characterize the effect of pH (values: 9 and 10.5) and two calcination temperatures (550 and 1000 °C) on chemical composition, molecule internal bonds, particle and crystallite size of the synthesized powders, XRD, EDS, FTIR and SEM techniques were utilized. The results showed that zinc cations could be incorporated in the HAp atomic structure to form low crystalline single phase of nHAP. The pH adjustment to 10.5 caused the formation of powders with smaller particle and crystallite sizes. The results also indicated that calcination temperature up to 1000 °C caused decomposition of zinc doped nHAp to β-tri calcium phosphate and tri zinc calcium phosphate phases which are used to control the speed of biodegradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.