Abstract

When considering 100% renewable scenarios, backup generation is needed for stabilizing the network when Climate Related Energy (CRE) such as wind, solar or run-of-the river hydropower are not sufficient for supplying the load. Several studies show that, over relatively short time period (less than 10 years), backup generation needs are reduced by dissipating power densities either in space through grids or time through storage. This study looks at the impact of low time frequency variations of CRE with a specific focus on the time variability induced by the North Atlantic Oscillation (NAO) teleconnection pattern during winter season. A set of eleven regions in Europe and Tunisia is used for highlighting space variability of the winter NAO’s impact. For each of these regions, we combine data from the Weather Research and Forecasting Model and the European Climate Assessment & Dataset for estimating solar-power, wind-power, run-of-the-river hydro-power and the energy load over the 1980–2012 time period. Results show that NAO’s impact on winter penetration rate depends on both the considered energy source and the location. They also highlight a non-linear relation between the NAO’s impact on CRE penetration rates and the level of equipment used for harvesting the CRE sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.