Abstract

In this work, the local low-cost materials from Nigeria were companied together to produce a lead-free concrete that can be used in shielding the ionizing γ-rays. This work investigated the impacts of partially replacing coarse aggregates (crushed granite) with a crushed waste glass on the chemical, physical, and radiation shielding characteristics. The developed concretes’ density was measured experimentally, and the fabricated concretes’ elemental chemical composition was determined utilizing a Thermo-Scientific X-ray fluorescence connected to an ARL-QUANT’X-EDXRF-Analyzer. The increase in the waste glass/granite (WG/G) substitution ratio between 0 and 17.6 % decreases the density of the produced concrete from 2.4 g/cm3 to 2.33 g/cm3. On the other hand, the absorption per unit mass (MAC) of the produced concretes increased by raising the WG/G ratio, where there was a 0.217–0.247 cm2/g increase in the MAC at 0.081 MeV, by raising the WG/G ratio between 0 and 17.6 %. Simultaneously, the study shows that the radiation protection efficiency (RPE) at 2.506 MeV for a 10 cm thickness of the fabricated concrete reaches 53.49, 61.14, 54.98, and 55.29 % for concretes with WG/G content of 0.0, 5.3, 11.1, and 17.6 % with the same order, respectively. Therefore, the thicker thicknesses of the developed concretes can offer high shielding capacity to be applied in radiation protection applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.